1470 lines
55 KiB
C++
1470 lines
55 KiB
C++
#include "vulkanRenderer.h"
|
|
#include "application.h"
|
|
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include <stb_image.h>
|
|
|
|
#define TINYOBJLOADER_IMPLEMENTATION
|
|
#include <tiny_obj_loader.h>
|
|
|
|
|
|
Renderer::Renderer() {
|
|
|
|
}
|
|
|
|
Renderer::~Renderer() {
|
|
|
|
}
|
|
|
|
|
|
void Renderer::init() {
|
|
|
|
createInstance();
|
|
createSurface();
|
|
pickPhysicalDevice();
|
|
createLogicalDevice();
|
|
createSwapChain();
|
|
createImageViews();
|
|
createRenderPass();
|
|
createDescriptorSetLayout();
|
|
createGraphicsPipeline();
|
|
createCommandPool();
|
|
createDepthResources();
|
|
createFramebuffers();
|
|
createTextureImage();
|
|
createTextureImageView();
|
|
createTextureSampler();
|
|
//loadModel();
|
|
createVertexBuffer();
|
|
createIndexBuffer();
|
|
createUniformBuffers();
|
|
createDescriptorPool();
|
|
createDescriptorSets();
|
|
createCommandBuffer();
|
|
createSyncObjects();
|
|
}
|
|
|
|
void Renderer::shutdown() {
|
|
|
|
vkDeviceWaitIdle(device);
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
|
|
vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
|
|
vkDestroyFence(device, inFlightFences[i], nullptr);
|
|
}
|
|
vkDestroyCommandPool(device, commandPool, nullptr);
|
|
|
|
cleanupSwapChain();
|
|
|
|
vkDestroySampler(device, textureSampler, nullptr);
|
|
vkDestroyImageView(device, textureImageView, nullptr);
|
|
vkDestroyImage(device, textureImage, nullptr);
|
|
vkFreeMemory(device, textureImageMemory, nullptr);
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
vkDestroyBuffer(device, uniformBuffers[i], nullptr);
|
|
vkFreeMemory(device, uniformBuffersMemory[i], nullptr);
|
|
}
|
|
|
|
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
|
|
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vkDestroyBuffer(device, indexBuffer, nullptr);
|
|
vkFreeMemory(device, indexBufferMemory, nullptr);
|
|
|
|
vkDestroyBuffer(device, vertexBuffer, nullptr);
|
|
vkFreeMemory(device, vertexBufferMemory, nullptr);
|
|
|
|
vkDestroyPipeline(device, graphicsPipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyRenderPass(device, renderPass, nullptr);
|
|
|
|
vkDestroyDevice(device, nullptr);
|
|
vkDestroySurfaceKHR(instance, surface, nullptr);
|
|
vkDestroyInstance(instance, nullptr);
|
|
|
|
}
|
|
|
|
uint32_t Renderer::getQueueFamily() {
|
|
QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);
|
|
return queueFamilyIndices.graphicsFamily.value();
|
|
}
|
|
|
|
void Renderer::draw() {
|
|
|
|
|
|
vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
|
|
|
|
uint32_t imageIndex;
|
|
err = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
|
|
|
|
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
|
|
recreateSwapChain();
|
|
return;
|
|
} else if (err != VK_SUCCESS && err != VK_SUBOPTIMAL_KHR) {
|
|
throw std::runtime_error("failed to acquire swap chain image!");
|
|
}
|
|
|
|
vkResetCommandBuffer(commandBuffers[currentFrame], 0);
|
|
|
|
|
|
updateUniformBuffer(currentFrame);
|
|
|
|
recordCommandBuffer(commandBuffers[currentFrame], imageIndex);
|
|
|
|
vkResetFences(device, 1, &inFlightFences[currentFrame]);
|
|
|
|
VkSubmitInfo submitInfo{};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
|
|
VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]};
|
|
VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = waitSemaphores;
|
|
submitInfo.pWaitDstStageMask = waitStages;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &commandBuffers[currentFrame];
|
|
|
|
|
|
VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]};
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
submitInfo.pSignalSemaphores = signalSemaphores;
|
|
|
|
if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to submit draw command buffer!");
|
|
}
|
|
|
|
VkPresentInfoKHR presentInfo{};
|
|
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
|
|
|
presentInfo.waitSemaphoreCount = 1;
|
|
presentInfo.pWaitSemaphores = signalSemaphores;
|
|
|
|
VkSwapchainKHR swapChains[] = {swapChain};
|
|
presentInfo.swapchainCount = 1;
|
|
presentInfo.pSwapchains = swapChains;
|
|
presentInfo.pImageIndices = &imageIndex;
|
|
presentInfo.pResults = nullptr; // Optional
|
|
|
|
err = vkQueuePresentKHR(presentQueue, &presentInfo);
|
|
|
|
if (err == VK_ERROR_OUT_OF_DATE_KHR || err == VK_SUBOPTIMAL_KHR) {
|
|
recreateSwapChain();
|
|
} else if (err != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to present swap chain image!");
|
|
}
|
|
|
|
currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
|
|
}
|
|
|
|
void Renderer::createInstance() {
|
|
VkApplicationInfo appInfo{};
|
|
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
|
appInfo.pApplicationName = App::Get().getWindow().title.c_str();
|
|
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.pEngineName = "No Engine";
|
|
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.apiVersion = VK_API_VERSION_1_0;
|
|
|
|
VkInstanceCreateInfo createInfo{};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
|
createInfo.pApplicationInfo = &appInfo;
|
|
|
|
uint32_t extensionCount = 0;
|
|
|
|
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
|
|
|
|
std::vector<VkExtensionProperties> properties(extensionCount);
|
|
|
|
const char** extensions = new const char*[extensionCount];
|
|
|
|
err = vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, properties.data());
|
|
|
|
check_vk_result();
|
|
|
|
for(int i = 0; i < extensionCount; i++) {
|
|
extensions[i] = properties.at(i).extensionName;
|
|
}
|
|
|
|
createInfo.enabledExtensionCount = extensionCount;
|
|
createInfo.ppEnabledExtensionNames = extensions;
|
|
|
|
createInfo.enabledLayerCount = 0;
|
|
|
|
err = vkCreateInstance(&createInfo, nullptr, &instance);
|
|
check_vk_result();
|
|
}
|
|
|
|
void Renderer::pickPhysicalDevice() {
|
|
|
|
uint32_t deviceCount = 0;
|
|
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
|
|
|
|
if (deviceCount == 0) {
|
|
throw std::runtime_error("failed to find GPUs with Vulkan support!");
|
|
}
|
|
|
|
std::vector<VkPhysicalDevice> devices(deviceCount);
|
|
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
|
|
|
|
for (const auto& device : devices) {
|
|
if (isDeviceSuitable(device)) {
|
|
physicalDevice = device;
|
|
msaaSamples = getMaxUsableSampleCount();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (physicalDevice == VK_NULL_HANDLE) {
|
|
throw std::runtime_error("failed to find a suitable GPU!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createLogicalDevice() {
|
|
|
|
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
|
|
|
|
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
|
|
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};
|
|
|
|
float queuePriority = 1.0f;
|
|
for (uint32_t queueFamily : uniqueQueueFamilies) {
|
|
VkDeviceQueueCreateInfo queueCreateInfo{};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.queueFamilyIndex = queueFamily;
|
|
queueCreateInfo.queueCount = 1;
|
|
queueCreateInfo.pQueuePriorities = &queuePriority;
|
|
queueCreateInfos.push_back(queueCreateInfo);
|
|
}
|
|
|
|
|
|
VkPhysicalDeviceFeatures deviceFeatures{};
|
|
deviceFeatures.samplerAnisotropy = VK_TRUE;
|
|
|
|
VkDeviceCreateInfo createInfo{};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
|
|
|
createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
|
|
createInfo.pQueueCreateInfos = queueCreateInfos.data();
|
|
|
|
createInfo.pEnabledFeatures = &deviceFeatures;
|
|
|
|
createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
|
|
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
|
|
|
//something about validation layers?
|
|
createInfo.enabledLayerCount = 0;
|
|
|
|
|
|
if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create logical device!");
|
|
}
|
|
|
|
vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
|
|
vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
|
|
}
|
|
|
|
void Renderer::createSurface() {
|
|
|
|
Window& window = App::Get().getWindow();
|
|
|
|
if (SDL_Vulkan_CreateSurface(window, instance, &surface) == 0)
|
|
{
|
|
throw std::runtime_error("Failed to create Vulkan surface.\n");
|
|
}
|
|
}
|
|
|
|
void Renderer::createSwapChain() {
|
|
|
|
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);
|
|
|
|
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
|
|
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
|
|
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);
|
|
|
|
swapChainImageFormat = surfaceFormat.format;
|
|
swapChainExtent = extent;
|
|
|
|
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
|
|
|
|
if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
|
|
imageCount = swapChainSupport.capabilities.maxImageCount;
|
|
}
|
|
|
|
VkSwapchainCreateInfoKHR createInfo{};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
|
createInfo.surface = surface;
|
|
|
|
createInfo.minImageCount = imageCount;
|
|
createInfo.imageFormat = surfaceFormat.format;
|
|
createInfo.imageColorSpace = surfaceFormat.colorSpace;
|
|
createInfo.imageExtent = extent;
|
|
createInfo.imageArrayLayers = 1;
|
|
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
|
|
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
|
|
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};
|
|
|
|
if (indices.graphicsFamily != indices.presentFamily) {
|
|
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
|
|
createInfo.queueFamilyIndexCount = 2;
|
|
createInfo.pQueueFamilyIndices = queueFamilyIndices;
|
|
} else {
|
|
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
createInfo.queueFamilyIndexCount = 0; // Optional
|
|
createInfo.pQueueFamilyIndices = nullptr; // Optional
|
|
}
|
|
|
|
createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
|
|
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
|
createInfo.presentMode = presentMode;
|
|
createInfo.clipped = VK_TRUE;
|
|
createInfo.oldSwapchain = VK_NULL_HANDLE;
|
|
|
|
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create swap chain!");
|
|
}
|
|
|
|
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
|
|
swapChainImages.resize(imageCount);
|
|
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
|
|
}
|
|
|
|
void Renderer::createImageViews() {
|
|
swapChainImageViews.resize(swapChainImages.size());
|
|
|
|
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
|
swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
}
|
|
|
|
void Renderer::createDescriptorPool() {
|
|
std::array<VkDescriptorPoolSize, 2> poolSizes{};
|
|
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
poolSizes[0].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
|
|
poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
poolSizes[1].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT) * 2;
|
|
|
|
VkDescriptorPoolCreateInfo poolInfo{};
|
|
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
poolInfo.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
|
|
poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
|
|
poolInfo.pPoolSizes = poolSizes.data();
|
|
poolInfo.maxSets = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT) * 2;
|
|
|
|
if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create descriptor pool!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createDescriptorSets() {
|
|
std::vector<VkDescriptorSetLayout> layouts(MAX_FRAMES_IN_FLIGHT, descriptorSetLayout);
|
|
VkDescriptorSetAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocInfo.descriptorPool = descriptorPool;
|
|
allocInfo.descriptorSetCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
|
|
allocInfo.pSetLayouts = layouts.data();
|
|
|
|
descriptorSets.resize(MAX_FRAMES_IN_FLIGHT);
|
|
if (vkAllocateDescriptorSets(device, &allocInfo, descriptorSets.data()) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate descriptor sets!");
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
VkDescriptorBufferInfo bufferInfo{};
|
|
bufferInfo.buffer = uniformBuffers[i];
|
|
bufferInfo.offset = 0;
|
|
bufferInfo.range = sizeof(UniformBufferObject);
|
|
|
|
VkDescriptorImageInfo imageInfo{};
|
|
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
imageInfo.imageView = textureImageView;
|
|
imageInfo.sampler = textureSampler;
|
|
|
|
std::array<VkWriteDescriptorSet, 2> descriptorWrites{};
|
|
|
|
descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descriptorWrites[0].dstSet = descriptorSets[i];
|
|
descriptorWrites[0].dstBinding = 0;
|
|
descriptorWrites[0].dstArrayElement = 0;
|
|
descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
descriptorWrites[0].descriptorCount = 1;
|
|
descriptorWrites[0].pBufferInfo = &bufferInfo;
|
|
|
|
descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descriptorWrites[1].dstSet = descriptorSets[i];
|
|
descriptorWrites[1].dstBinding = 1;
|
|
descriptorWrites[1].dstArrayElement = 0;
|
|
descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
descriptorWrites[1].descriptorCount = 1;
|
|
descriptorWrites[1].pImageInfo = &imageInfo;
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
|
|
}
|
|
}
|
|
|
|
void Renderer::createDescriptorSetLayout() {
|
|
VkDescriptorSetLayoutBinding uboLayoutBinding{};
|
|
uboLayoutBinding.binding = 0;
|
|
uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
uboLayoutBinding.descriptorCount = 1;
|
|
uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
uboLayoutBinding.pImmutableSamplers = nullptr; // Optional
|
|
|
|
VkDescriptorSetLayoutBinding samplerLayoutBinding{};
|
|
samplerLayoutBinding.binding = 1;
|
|
samplerLayoutBinding.descriptorCount = 1;
|
|
samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
samplerLayoutBinding.pImmutableSamplers = nullptr;
|
|
samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
|
|
std::array<VkDescriptorSetLayoutBinding, 2> bindings = {uboLayoutBinding, samplerLayoutBinding};
|
|
VkDescriptorSetLayoutCreateInfo layoutInfo{};
|
|
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
|
|
layoutInfo.pBindings = bindings.data();
|
|
|
|
|
|
if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create descriptor set layout!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createGraphicsPipeline() {
|
|
|
|
#ifdef SHDR_PATH
|
|
auto vertShaderCode = readFile(STRINGIZE_VALUE_OF(SHDR_PATH/vert.spv));
|
|
auto fragShaderCode = readFile(STRINGIZE_VALUE_OF(SHDR_PATH/frag.spv));
|
|
#else
|
|
auto vertShaderCode = readFile("result/bin/vert.spv");
|
|
auto fragShaderCode = readFile("result/bin/frag.spv");
|
|
#endif
|
|
|
|
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
|
|
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);
|
|
|
|
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
|
|
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
|
|
|
|
vertShaderStageInfo.module = vertShaderModule;
|
|
vertShaderStageInfo.pName = "main";
|
|
|
|
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
|
|
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
fragShaderStageInfo.module = fragShaderModule;
|
|
fragShaderStageInfo.pName = "main";
|
|
|
|
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
|
|
|
|
auto bindingDescription = Vertex::getBindingDescription();
|
|
auto attributeDescriptions = Vertex::getAttributeDescriptions();
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
|
|
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
|
vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
|
|
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
|
|
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencil{};
|
|
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
depthStencil.depthTestEnable = VK_TRUE;
|
|
depthStencil.depthWriteEnable = VK_TRUE;
|
|
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
|
|
depthStencil.depthBoundsTestEnable = VK_FALSE;
|
|
depthStencil.minDepthBounds = 0.0f; // Optional
|
|
depthStencil.maxDepthBounds = 1.0f; // Optional
|
|
depthStencil.stencilTestEnable = VK_FALSE;
|
|
depthStencil.front = {}; // Optional
|
|
depthStencil.back = {}; // Optional
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
|
|
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
inputAssembly.primitiveRestartEnable = VK_FALSE;
|
|
|
|
VkViewport viewport{};
|
|
viewport.x = 0.0f;
|
|
viewport.y = 0.0f;
|
|
viewport.width = (float) swapChainExtent.width;
|
|
viewport.height = (float) swapChainExtent.height;
|
|
viewport.minDepth = 0.0f;
|
|
viewport.maxDepth = 1.0f;
|
|
|
|
VkRect2D scissor{};
|
|
scissor.offset = {0, 0};
|
|
scissor.extent = swapChainExtent;
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState{};
|
|
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
viewportState.viewportCount = 1;
|
|
viewportState.pViewports = &viewport;
|
|
viewportState.scissorCount = 1;
|
|
viewportState.pScissors = &scissor;
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizer{};
|
|
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rasterizer.depthClampEnable = VK_FALSE;
|
|
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
|
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
|
|
rasterizer.lineWidth = 1.0f;
|
|
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rasterizer.depthBiasEnable = VK_FALSE;
|
|
rasterizer.depthBiasConstantFactor = 0.0f; // Optional
|
|
rasterizer.depthBiasClamp = 0.0f; // Optional
|
|
rasterizer.depthBiasSlopeFactor = 0.0f; // Optional
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampling{};
|
|
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
multisampling.sampleShadingEnable = VK_FALSE;
|
|
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
multisampling.minSampleShading = 1.0f; // Optional
|
|
multisampling.pSampleMask = nullptr; // Optional
|
|
multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
|
|
multisampling.alphaToOneEnable = VK_FALSE; // Optional
|
|
|
|
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
|
|
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
|
colorBlendAttachment.blendEnable = VK_FALSE;
|
|
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
|
|
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
|
|
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
|
|
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
|
|
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
|
|
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlending{};
|
|
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
colorBlending.logicOpEnable = VK_FALSE;
|
|
colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional
|
|
colorBlending.attachmentCount = 1;
|
|
colorBlending.pAttachments = &colorBlendAttachment;
|
|
colorBlending.blendConstants[0] = 0.0f; // Optional
|
|
colorBlending.blendConstants[1] = 0.0f; // Optional
|
|
colorBlending.blendConstants[2] = 0.0f; // Optional
|
|
colorBlending.blendConstants[3] = 0.0f; // Optional
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
|
|
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutInfo.setLayoutCount = 1;
|
|
pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout;
|
|
pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
|
|
pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional
|
|
|
|
if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create pipeline layout!");
|
|
}
|
|
|
|
std::vector<VkDynamicState> dynamicStates = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
|
|
VkPipelineDynamicStateCreateInfo dynamicState{};
|
|
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
|
|
dynamicState.pDynamicStates = dynamicStates.data();
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineInfo{};
|
|
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
pipelineInfo.stageCount = 2;
|
|
pipelineInfo.pStages = shaderStages;
|
|
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
|
pipelineInfo.pInputAssemblyState = &inputAssembly;
|
|
pipelineInfo.pViewportState = &viewportState;
|
|
pipelineInfo.pRasterizationState = &rasterizer;
|
|
pipelineInfo.pMultisampleState = &multisampling;
|
|
pipelineInfo.pDepthStencilState = nullptr; // Optional
|
|
pipelineInfo.pColorBlendState = &colorBlending;
|
|
pipelineInfo.pDynamicState = &dynamicState;
|
|
pipelineInfo.layout = pipelineLayout;
|
|
pipelineInfo.renderPass = renderPass;
|
|
pipelineInfo.subpass = 0;
|
|
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
|
|
pipelineInfo.basePipelineIndex = -1; // Optional
|
|
pipelineInfo.pDepthStencilState = &depthStencil;
|
|
|
|
if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create graphics pipeline!");
|
|
}
|
|
|
|
vkDestroyShaderModule(device, fragShaderModule, nullptr);
|
|
vkDestroyShaderModule(device, vertShaderModule, nullptr);
|
|
}
|
|
|
|
void Renderer::createRenderPass() {
|
|
VkAttachmentDescription depthAttachment{};
|
|
depthAttachment.format = findDepthFormat();
|
|
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depthAttachmentRef{};
|
|
depthAttachmentRef.attachment = 1;
|
|
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
|
|
VkAttachmentDescription colorAttachment{};
|
|
colorAttachment.format = swapChainImageFormat;
|
|
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
|
|
VkAttachmentReference colorAttachmentRef{};
|
|
colorAttachmentRef.attachment = 0;
|
|
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpass{};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pColorAttachments = &colorAttachmentRef;
|
|
subpass.pDepthStencilAttachment = &depthAttachmentRef;
|
|
|
|
std::array<VkAttachmentDescription, 2> attachments = {colorAttachment, depthAttachment};
|
|
VkRenderPassCreateInfo renderPassInfo{};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
|
|
renderPassInfo.pAttachments = attachments.data();
|
|
renderPassInfo.subpassCount = 1;
|
|
renderPassInfo.pSubpasses = &subpass;
|
|
|
|
|
|
VkSubpassDependency dependency{};
|
|
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependency.dstSubpass = 0;
|
|
dependency.srcAccessMask = 0;
|
|
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
|
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
|
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
|
|
renderPassInfo.dependencyCount = 1;
|
|
renderPassInfo.pDependencies = &dependency;
|
|
|
|
if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create render pass!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createFramebuffers() {
|
|
swapChainFramebuffers.resize(swapChainImageViews.size());
|
|
|
|
for (size_t i = 0; i < swapChainImageViews.size(); i++) {
|
|
std::vector<VkImageView> attachments = {
|
|
swapChainImageViews[i],
|
|
depthImageView
|
|
};
|
|
|
|
VkFramebufferCreateInfo framebufferInfo{};
|
|
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
|
framebufferInfo.renderPass = renderPass;
|
|
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
|
|
framebufferInfo.pAttachments = attachments.data();
|
|
framebufferInfo.width = swapChainExtent.width;
|
|
framebufferInfo.height = swapChainExtent.height;
|
|
framebufferInfo.layers = 1;
|
|
|
|
if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create framebuffer!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void Renderer::createCommandPool() {
|
|
QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);
|
|
|
|
VkCommandPoolCreateInfo poolInfo{};
|
|
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
|
|
|
|
if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create command pool!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createCommandBuffer() {
|
|
commandBuffers.resize(MAX_FRAMES_IN_FLIGHT);
|
|
|
|
VkCommandBufferAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
allocInfo.commandPool = commandPool;
|
|
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
allocInfo.commandBufferCount = (uint32_t) commandBuffers.size();
|
|
|
|
if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate command buffers!");
|
|
}
|
|
}
|
|
|
|
void Renderer::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
|
|
VkCommandBufferBeginInfo beginInfo{};
|
|
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
|
beginInfo.pInheritanceInfo = nullptr; // Optional
|
|
|
|
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to begin recording command buffer!");
|
|
}
|
|
|
|
VkRenderPassBeginInfo renderPassInfo{};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassInfo.renderPass = renderPass;
|
|
|
|
renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
|
|
|
|
renderPassInfo.renderArea.offset = {0, 0};
|
|
renderPassInfo.renderArea.extent = swapChainExtent;
|
|
|
|
std::array<VkClearValue, 2> clearValues{};
|
|
clearValues[0].color = {{0.0f, 0.0f, 0.0f, 1.0f}};
|
|
clearValues[1].depthStencil = {1.0f, 0};
|
|
|
|
renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
|
|
renderPassInfo.pClearValues = clearValues.data();
|
|
|
|
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
|
|
|
|
|
|
VkViewport viewport{};
|
|
viewport.x = 0.0f;
|
|
viewport.y = 0.0f;
|
|
viewport.width = static_cast<float>(swapChainExtent.width);
|
|
viewport.height = static_cast<float>(swapChainExtent.height);
|
|
viewport.minDepth = 0.0f;
|
|
viewport.maxDepth = 1.0f;
|
|
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
|
|
|
VkRect2D scissor{};
|
|
scissor.offset = {0, 0};
|
|
scissor.extent = swapChainExtent;
|
|
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
|
|
|
VkBuffer vertexBuffers[] = {vertexBuffer};
|
|
VkDeviceSize offsets[] = {0};
|
|
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
|
|
|
|
vkCmdBindIndexBuffer(commandBuffer, indexBuffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets[currentFrame], 0, nullptr);
|
|
|
|
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);
|
|
|
|
App::Get().getLayerStack().updateLayers();
|
|
|
|
vkCmdEndRenderPass(commandBuffer);
|
|
|
|
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to record command buffer!");
|
|
}
|
|
}
|
|
|
|
void Renderer::createSyncObjects() {
|
|
imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
|
|
renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
|
|
inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
|
|
|
|
VkSemaphoreCreateInfo semaphoreInfo{};
|
|
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
|
|
VkFenceCreateInfo fenceInfo{};
|
|
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
|
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
|
|
vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
|
|
vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
|
|
|
|
throw std::runtime_error("failed to create synchronization objects for a frame!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void Renderer::createVertexBuffer() {
|
|
VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
|
|
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingBufferMemory;
|
|
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
|
|
|
void* data;
|
|
vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
|
|
memcpy(data, vertices.data(), (size_t) bufferSize);
|
|
vkUnmapMemory(device, stagingBufferMemory);
|
|
|
|
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);
|
|
|
|
copyBuffer(stagingBuffer, vertexBuffer, bufferSize);
|
|
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
vkFreeMemory(device, stagingBufferMemory, nullptr);
|
|
}
|
|
|
|
void Renderer::createIndexBuffer() {
|
|
VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();
|
|
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingBufferMemory;
|
|
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
|
|
|
void* data;
|
|
vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
|
|
memcpy(data, indices.data(), (size_t) bufferSize);
|
|
vkUnmapMemory(device, stagingBufferMemory);
|
|
|
|
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);
|
|
|
|
copyBuffer(stagingBuffer, indexBuffer, bufferSize);
|
|
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
vkFreeMemory(device, stagingBufferMemory, nullptr);
|
|
}
|
|
|
|
void Renderer::createUniformBuffers() {
|
|
VkDeviceSize bufferSize = sizeof(UniformBufferObject);
|
|
|
|
uniformBuffers.resize(MAX_FRAMES_IN_FLIGHT);
|
|
uniformBuffersMemory.resize(MAX_FRAMES_IN_FLIGHT);
|
|
uniformBuffersMapped.resize(MAX_FRAMES_IN_FLIGHT);
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffers[i], uniformBuffersMemory[i]);
|
|
|
|
vkMapMemory(device, uniformBuffersMemory[i], 0, bufferSize, 0, &uniformBuffersMapped[i]);
|
|
}
|
|
}
|
|
|
|
void Renderer::updateUniformBuffer(uint32_t currentImage) {
|
|
static auto startTime = std::chrono::high_resolution_clock::now();
|
|
|
|
auto currentTime = std::chrono::high_resolution_clock::now();
|
|
float time = std::chrono::duration<float, std::chrono::seconds::period>(currentTime - startTime).count();
|
|
|
|
UniformBufferObject ubo{};
|
|
ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float) swapChainExtent.height, 0.1f, 10.0f);
|
|
ubo.proj[1][1] *= -1;
|
|
memcpy(uniformBuffersMapped[currentImage], &ubo, sizeof(ubo));
|
|
}
|
|
|
|
void Renderer::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {
|
|
VkBufferCreateInfo bufferInfo{};
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = size;
|
|
bufferInfo.usage = usage;
|
|
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create buffer!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetBufferMemoryRequirements(device, buffer, &memRequirements);
|
|
|
|
VkMemoryAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.allocationSize = memRequirements.size;
|
|
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate buffer memory!");
|
|
}
|
|
|
|
vkBindBufferMemory(device, buffer, bufferMemory, 0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Renderer::loadModel() {
|
|
tinyobj::attrib_t attrib;
|
|
std::vector<tinyobj::shape_t> shapes;
|
|
std::vector<tinyobj::material_t> materials;
|
|
std::string warn, err;
|
|
|
|
if (!tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, MODEL_PATH.c_str())) {
|
|
throw std::runtime_error(warn + err);
|
|
}
|
|
|
|
for (const auto& shape : shapes) {
|
|
for (const auto& index : shape.mesh.indices) {
|
|
Vertex vertex{};
|
|
|
|
//vertices.push_back(vertex);
|
|
//indices.push_back(indices.size());
|
|
|
|
vertex.pos = {
|
|
attrib.vertices[3 * index.vertex_index + 0],
|
|
attrib.vertices[3 * index.vertex_index + 1],
|
|
attrib.vertices[3 * index.vertex_index + 2]
|
|
};
|
|
|
|
vertex.texCoord = {
|
|
attrib.texcoords[2 * index.texcoord_index + 0],
|
|
1.0f - attrib.texcoords[2 * index.texcoord_index + 1]
|
|
};
|
|
|
|
vertex.color = {1.0f, 1.0f, 1.0f};
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
bool Renderer::hasStencilComponent(VkFormat format) {
|
|
return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
|
|
}
|
|
|
|
VkFormat Renderer::findDepthFormat() {
|
|
return findSupportedFormat(
|
|
{VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT},
|
|
VK_IMAGE_TILING_OPTIMAL,
|
|
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
|
|
);
|
|
}
|
|
|
|
VkFormat Renderer::findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {
|
|
for (VkFormat format : candidates) {
|
|
VkFormatProperties props;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);
|
|
|
|
if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
|
|
return format;
|
|
} else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
|
|
return format;
|
|
}
|
|
}
|
|
|
|
throw std::runtime_error("failed to find supported format!");
|
|
}
|
|
|
|
void Renderer::createDepthResources() {
|
|
VkFormat depthFormat = findDepthFormat();
|
|
|
|
createImage(swapChainExtent.width, swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
|
|
depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT);
|
|
|
|
transitionImageLayout(depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
void Renderer::createTextureSampler() {
|
|
|
|
VkPhysicalDeviceProperties properties{};
|
|
vkGetPhysicalDeviceProperties(physicalDevice, &properties);
|
|
|
|
VkSamplerCreateInfo samplerInfo{};
|
|
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
|
|
samplerInfo.magFilter = VK_FILTER_LINEAR;
|
|
samplerInfo.minFilter = VK_FILTER_LINEAR;
|
|
|
|
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
|
|
samplerInfo.anisotropyEnable = VK_TRUE;
|
|
samplerInfo.maxAnisotropy = properties.limits.maxSamplerAnisotropy;
|
|
|
|
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
|
|
|
|
samplerInfo.unnormalizedCoordinates = VK_FALSE;
|
|
|
|
samplerInfo.compareEnable = VK_FALSE;
|
|
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
|
|
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
samplerInfo.mipLodBias = 0.0f;
|
|
samplerInfo.minLod = 0.0f;
|
|
samplerInfo.maxLod = 0.0f;
|
|
|
|
if (vkCreateSampler(device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create texture sampler!");
|
|
}
|
|
}
|
|
|
|
VkImageView Renderer::createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags) {
|
|
VkImageViewCreateInfo viewInfo{};
|
|
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
viewInfo.image = image;
|
|
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
viewInfo.format = format;
|
|
viewInfo.subresourceRange.aspectMask = aspectFlags;
|
|
viewInfo.subresourceRange.baseMipLevel = 0;
|
|
viewInfo.subresourceRange.levelCount = 1;
|
|
viewInfo.subresourceRange.baseArrayLayer = 0;
|
|
viewInfo.subresourceRange.layerCount = 1;
|
|
|
|
VkImageView imageView;
|
|
if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create texture image view!");
|
|
}
|
|
|
|
return imageView;
|
|
}
|
|
|
|
void Renderer::createTextureImageView() {
|
|
textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
|
|
void Renderer::copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height) {
|
|
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
|
|
VkBufferImageCopy region{};
|
|
region.bufferOffset = 0;
|
|
region.bufferRowLength = 0;
|
|
region.bufferImageHeight = 0;
|
|
|
|
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
region.imageSubresource.mipLevel = 0;
|
|
region.imageSubresource.baseArrayLayer = 0;
|
|
region.imageSubresource.layerCount = 1;
|
|
|
|
region.imageOffset = {0, 0, 0};
|
|
region.imageExtent = {
|
|
width,
|
|
height,
|
|
1
|
|
};
|
|
|
|
vkCmdCopyBufferToImage(
|
|
commandBuffer,
|
|
buffer,
|
|
image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
®ion
|
|
);
|
|
|
|
endSingleTimeCommands(commandBuffer);
|
|
}
|
|
|
|
void Renderer::transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout) {
|
|
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
|
|
VkImageMemoryBarrier barrier{};
|
|
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barrier.oldLayout = oldLayout;
|
|
barrier.newLayout = newLayout;
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.image = image;
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
barrier.subresourceRange.baseMipLevel = 0;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.subresourceRange.baseArrayLayer = 0;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
barrier.srcAccessMask = 0; // TODO
|
|
barrier.dstAccessMask = 0; // TODO
|
|
|
|
VkPipelineStageFlags sourceStage;
|
|
VkPipelineStageFlags destinationStage;
|
|
|
|
if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
|
|
if (hasStencilComponent(format)) {
|
|
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
} else {
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
}
|
|
|
|
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
barrier.srcAccessMask = 0;
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
} else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
|
|
barrier.srcAccessMask = 0;
|
|
barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
|
} else {
|
|
throw std::invalid_argument("unsupported layout transition!");
|
|
}
|
|
|
|
vkCmdPipelineBarrier(
|
|
commandBuffer,
|
|
sourceStage, destinationStage,
|
|
0,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &barrier
|
|
);
|
|
|
|
|
|
|
|
endSingleTimeCommands(commandBuffer);
|
|
|
|
|
|
}
|
|
|
|
VkCommandBuffer Renderer::beginSingleTimeCommands() {
|
|
VkCommandBufferAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
allocInfo.commandPool = commandPool;
|
|
allocInfo.commandBufferCount = 1;
|
|
|
|
VkCommandBuffer commandBuffer;
|
|
vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);
|
|
|
|
VkCommandBufferBeginInfo beginInfo{};
|
|
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
|
|
|
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
|
|
|
return commandBuffer;
|
|
}
|
|
|
|
void Renderer::endSingleTimeCommands(VkCommandBuffer commandBuffer) {
|
|
vkEndCommandBuffer(commandBuffer);
|
|
|
|
VkSubmitInfo submitInfo{};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &commandBuffer;
|
|
|
|
vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
vkQueueWaitIdle(graphicsQueue);
|
|
|
|
vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
|
|
}
|
|
|
|
void Renderer::createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) {
|
|
VkImageCreateInfo imageInfo{};
|
|
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
|
imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageInfo.extent.width = width;
|
|
imageInfo.extent.height = height;
|
|
imageInfo.extent.depth = 1;
|
|
imageInfo.mipLevels = 1;
|
|
imageInfo.arrayLayers = 1;
|
|
imageInfo.format = format;
|
|
imageInfo.tiling = tiling;
|
|
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageInfo.usage = usage;
|
|
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create image!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetImageMemoryRequirements(device, image, &memRequirements);
|
|
|
|
VkMemoryAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.allocationSize = memRequirements.size;
|
|
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate image memory!");
|
|
}
|
|
|
|
vkBindImageMemory(device, image, imageMemory, 0);
|
|
}
|
|
|
|
void Renderer::createTextureImage() {
|
|
int texWidth, texHeight, texChannels;
|
|
stbi_uc* pixels = stbi_load(TEXTURE_PATH.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
|
|
VkDeviceSize imageSize = texWidth * texHeight * 4;
|
|
|
|
if (!pixels) {
|
|
throw std::runtime_error("failed to load texture image!");
|
|
}
|
|
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingBufferMemory;
|
|
createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);
|
|
|
|
void* data;
|
|
vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &data);
|
|
memcpy(data, pixels, static_cast<size_t>(imageSize));
|
|
vkUnmapMemory(device, stagingBufferMemory);
|
|
|
|
stbi_image_free(pixels);
|
|
|
|
createImage(texWidth, texHeight, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);
|
|
|
|
transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
|
|
transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
vkFreeMemory(device, stagingBufferMemory, nullptr);
|
|
}
|
|
|
|
VkSampleCountFlagBits Renderer::getMaxUsableSampleCount() {
|
|
VkPhysicalDeviceProperties physicalDeviceProperties;
|
|
vkGetPhysicalDeviceProperties(physicalDevice, &physicalDeviceProperties);
|
|
|
|
VkSampleCountFlags counts = physicalDeviceProperties.limits.framebufferColorSampleCounts & physicalDeviceProperties.limits.framebufferDepthSampleCounts;
|
|
if (counts & VK_SAMPLE_COUNT_64_BIT) { return VK_SAMPLE_COUNT_64_BIT; }
|
|
if (counts & VK_SAMPLE_COUNT_32_BIT) { return VK_SAMPLE_COUNT_32_BIT; }
|
|
if (counts & VK_SAMPLE_COUNT_16_BIT) { return VK_SAMPLE_COUNT_16_BIT; }
|
|
if (counts & VK_SAMPLE_COUNT_8_BIT) { return VK_SAMPLE_COUNT_8_BIT; }
|
|
if (counts & VK_SAMPLE_COUNT_4_BIT) { return VK_SAMPLE_COUNT_4_BIT; }
|
|
if (counts & VK_SAMPLE_COUNT_2_BIT) { return VK_SAMPLE_COUNT_2_BIT; }
|
|
|
|
return VK_SAMPLE_COUNT_1_BIT;
|
|
}
|
|
|
|
void Renderer::copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
|
|
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
|
|
VkBufferCopy copyRegion{};
|
|
copyRegion.size = size;
|
|
vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region);
|
|
|
|
endSingleTimeCommands(commandBuffer);
|
|
}
|
|
|
|
uint32_t Renderer::findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
|
|
|
|
VkPhysicalDeviceMemoryProperties memProperties;
|
|
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);
|
|
|
|
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
|
|
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
throw std::runtime_error("failed to find suitable memory type!");
|
|
}
|
|
|
|
void Renderer::recreateSwapChain() {
|
|
Window& window = App::Get().getWindow();
|
|
|
|
while (window.x == 0 || window.y == 0) {
|
|
window.getSize();
|
|
SDL_WaitEvent(NULL);
|
|
}
|
|
|
|
vkDeviceWaitIdle(device);
|
|
|
|
cleanupSwapChain();
|
|
|
|
createSwapChain();
|
|
createImageViews();
|
|
createDepthResources();
|
|
createFramebuffers();
|
|
}
|
|
|
|
void Renderer::cleanupSwapChain() {
|
|
|
|
vkDestroyImageView(device, depthImageView, nullptr);
|
|
vkDestroyImage(device, depthImage, nullptr);
|
|
vkFreeMemory(device, depthImageMemory, nullptr);
|
|
|
|
for (size_t i = 0; i < swapChainFramebuffers.size(); i++) {
|
|
vkDestroyFramebuffer(device, swapChainFramebuffers[i], nullptr);
|
|
}
|
|
|
|
for (size_t i = 0; i < swapChainImageViews.size(); i++) {
|
|
vkDestroyImageView(device, swapChainImageViews[i], nullptr);
|
|
}
|
|
|
|
vkDestroySwapchainKHR(device, swapChain, nullptr);
|
|
}
|
|
|
|
VkShaderModule Renderer::createShaderModule(const std::vector<char>& code) {
|
|
VkShaderModuleCreateInfo createInfo{};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
createInfo.codeSize = code.size();
|
|
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
|
|
|
|
VkShaderModule shaderModule;
|
|
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create shader module!");
|
|
}
|
|
|
|
return shaderModule;
|
|
}
|
|
|
|
VkExtent2D Renderer::chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
|
|
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
|
|
return capabilities.currentExtent;
|
|
} else {
|
|
Window& window = App::Get().getWindow();
|
|
window.getSize();
|
|
|
|
VkExtent2D actualExtent = {
|
|
static_cast<uint32_t>(window.x),
|
|
static_cast<uint32_t>(window.y)
|
|
};
|
|
|
|
actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
|
|
actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
|
|
|
|
return actualExtent;
|
|
}
|
|
}
|
|
|
|
VkPresentModeKHR Renderer::chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
|
|
for (const auto& availablePresentMode : availablePresentModes) {
|
|
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
|
return availablePresentMode;
|
|
}
|
|
}
|
|
|
|
return VK_PRESENT_MODE_FIFO_KHR;
|
|
}
|
|
|
|
VkSurfaceFormatKHR Renderer::chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
|
|
|
|
for (const auto& availableFormat : availableFormats) {
|
|
if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
|
|
return availableFormat;
|
|
}
|
|
}
|
|
|
|
return availableFormats[0];
|
|
}
|
|
|
|
SwapChainSupportDetails Renderer::querySwapChainSupport(VkPhysicalDevice device) {
|
|
SwapChainSupportDetails details;
|
|
|
|
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);
|
|
|
|
uint32_t formatCount;
|
|
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
|
|
|
|
if (formatCount != 0) {
|
|
details.formats.resize(formatCount);
|
|
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
|
|
}
|
|
|
|
uint32_t presentModeCount;
|
|
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);
|
|
|
|
if (presentModeCount != 0) {
|
|
details.presentModes.resize(presentModeCount);
|
|
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
|
|
}
|
|
|
|
|
|
return details;
|
|
}
|
|
|
|
bool Renderer::checkDeviceExtensionSupport(VkPhysicalDevice device) {
|
|
|
|
uint32_t extensionCount;
|
|
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
|
|
|
|
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
|
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());
|
|
|
|
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
|
|
|
|
for (const auto& extension : availableExtensions) {
|
|
requiredExtensions.erase(extension.extensionName);
|
|
}
|
|
|
|
return requiredExtensions.empty();
|
|
}
|
|
|
|
QueueFamilyIndices Renderer::findQueueFamilies(VkPhysicalDevice device) {
|
|
QueueFamilyIndices indices;
|
|
|
|
VkBool32 presentSupport = false;
|
|
|
|
uint32_t queueFamilyCount = 0;
|
|
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
|
|
|
|
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
|
|
|
|
int i = 0;
|
|
for (const auto& queueFamily : queueFamilies) {
|
|
if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
|
indices.graphicsFamily = i;
|
|
}
|
|
|
|
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
|
|
|
|
if (presentSupport) {
|
|
indices.presentFamily = i;
|
|
}
|
|
|
|
if (indices.isComplete()) {
|
|
break;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
|
|
bool Renderer::isDeviceSuitable(VkPhysicalDevice device) {
|
|
|
|
|
|
QueueFamilyIndices indices = findQueueFamilies(device);
|
|
|
|
bool extensionsSupported = checkDeviceExtensionSupport(device);
|
|
|
|
bool swapChainAdequate = false;
|
|
if (extensionsSupported) {
|
|
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
|
|
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
|
|
}
|
|
|
|
VkPhysicalDeviceFeatures supportedFeatures;
|
|
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
|
|
|
|
return indices.isComplete() && extensionsSupported && swapChainAdequate && supportedFeatures.samplerAnisotropy;
|
|
}
|
|
|
|
bool Renderer::isExtensionAvailable(const std::vector<VkExtensionProperties>& properties, const char* extension)
|
|
{
|
|
for (const VkExtensionProperties& p : properties)
|
|
if (strcmp(p.extensionName, extension) == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Renderer::check_vk_result() {
|
|
if (err == 0)
|
|
return;
|
|
fprintf(stderr, "[vulkan] Error: VkResult = %d\n", err);
|
|
if (err < 0)
|
|
abort();
|
|
}
|